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The ICE technique for numerical fluid dynamics has been revised considerably, and 
generalized in such a way as to extend the applicability to fluid flows with arbitrary 
equation of state and the full viscous stress tensor. The method is useful for the numerical 
solution of time-dependent fluid flow problems in several space dimensions, for all 
Mach numbers from zero (incompressible limit) to infinity (hypersonic limit). This 
new version is considerably less complicated than the original form. The present desctip- 
tion does not assume a familiarity with the previous one. 

INTRODUCTION 

An Implicit Continuous-fluid Eulerian (ICE) technique has been proposed [I] 
for the solution of time-dependent problems in multidimensional fluid dynamics, 
in which the Mach number may vary from zero to infinity. Test calculations 
have shown that the method as originally proposed works well, even though its 
scope of applicability is fairly limited. The crucial features that enable this are 
the advanced-time (implicit) treatment of the density in the equation of state and 
of the density and velocity in the mass equation. Accordingly, the technique 
reduces essentially to the MAC method for incompressible flow [‘I] as the sound 
speed becomes infinite, and to an implicit variant of the usual Eulerian tech- 
niques [3] as the sound speed becomes small. 

In this paper, a modified ICE method is described, in which the procedure is 
considerably simplified and the scope of applicability is greatly extended. In 
particular, the present modified form 

1. is applicable to arbitrary equation of state, 
2. introduces a more meaningful variable for the Poisson equation, 
3. reduces the finite-difference Poisson equation to a five-point form, with 

considerably simplified coefficients, 

* This work was performed under the auspices of the United States Atomic Energy Commission. 
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4. incorporates the correct, full viscous stress tensor, instead of a simple 
artificial viscosity, 

5. is time-centered in such a way as to eliminate some undesirable low-order 
truncation errors, 

6. contains an optional mass-diffusion term, which can enhance the numerical 
accuracy or stability in some circumstances, 

7. is applicable to free-surface flows, as well as to those that are confined, 
8. can be used for both plane and cylindrically symmetric calculations. 

The following discussion describes the modified technique in detail, shows 
some properties of this type of implicit solution procedure, and demonstrates the 
applicability by means of results from a typical calculation. 

The essential features of the methodology can be summarized as follows. We 
start from conservative differential equations for the transport of mass, momentum, 
and energy. The flow region is subdivided into an Eulerian mesh of rectangular 
cells, and the equations are approximated by conservative finite-difference expres- 
sions relative to these cells. In addition, the time advancement progresses through 
a sequence of finite intervals, the results of each cycle being calculated from data 
remaining from the previous cycle, or supplied as initial conditions. 

In the mass equation, the convective fluxes are expressed as functions of the 
unknown advanced-time densities and velocities. Likewise, the pressure in the 
momentum equations is expressed as a function of the unknown advanced-time 
density. From these equations, the undetermined velocities can be eliminated, 
giving a Poisson equation for the new densities. Conversion of this to an equation 
for the pressure produces the Poisson equation that actually is solved. From the 
results can then be found densities and velocities for the new cycle. Finally, the 
energy changes are computed. 

THE DIFFERENTIAL EQUATIONS 

This solution process is illustrated for calculations in cylindrical coordinates 
with axial symmetry. For problems in plane coordinates, the equations are easily 
modified by replacing r + 1.0 throughout. In the computer program this trans- 
formation can be exploited to increase the versatility considerably. In conservative 
form, with gravity parallel to the axis, the equations can be written 
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where 

and 

E G I + (u” + v”)/2. 

The pressure p is a prescribed function of the density p, and of the specific internal 
energy I; u and ZJ are the radial (I) and axial (z) velocity components, respectively. 
The temperature in the heat conduction term has been eliminated by means of 
the constant coefficient B. For simplicity, the viscosity coefiicients A and 1~ have 
been chosen to be constants; in general, the incorporation of variable viscosi-fy 
coefficients has no conceptual effect on the methodology, being manifested simply 
by changes in form of the R and S functions, defined below, and of the energy 
equation, which is treated separately at the end of the cycle. An additional coeffi- 
cient T has been utilized to allow for a mass diffusion term in Eq. (1); in most 
cases, r = 0, but in a few circumstances a negative mass diffusion (7 < 0) can 
assist in the removal of an undesirable low-order truncation-error term in the 
finite-difference expressions, while a positive mass diffusion (T > 0) may some- 
times be necessary for numerical stability. 

In addition to the advantage of simplicity for the present demonstration, the 
use of constant viscosity coefkients yields terms that demonstrate quite close 
similarity to the “artificial viscosity” terms that ordinarily are used in both low- 
speed [2] and high-speed [3] flow calculations. Indeed, the relationship to usual 
forms of the artificial viscosity is considerably enhanced by replacing h + ph and 
,u + pp. For some types of problems, we have found this to be very useful for the 
purpose of enabling the viscosity stability condition to remain unchanged through 
a calculation. 
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THE DIFFERENCE EQUATIONS 

A fragment of the Eulerian finite-difference mesh is shown in Fig. 1, which 
illustrates the centering of the field variables relative to a typical cell. The index i 
counts cell centers from left to right, while j counts them from bottom to top. 
Accordingly, quantities defined at cell edges are labeled with indices i -& + or 
j & $. Thus, for example, Eq. (5) becomes 

4i,Ll = -(A + 44 [$&T- (ri+l!B~i+llp.i - ~i-lI2~i-lIZ~) + & (%,j+1,2 - vi,,-,;,,], 
in which 6r and 8z are the dimensions of a cell. 

(7) 

"I-V*j 0 

Pij*PZjBij 
0 0 "i+!/ei 

FIG. 1. Layout of variables and indices in the mesh. 

For the finite-difference forms of the momentum equations, it is convenient to 
separate those parts that will contain no advanced-time factors. For such terms 
no additional index is required. Thus, we define 

1 Ri+l,B,j = ___ 
i-i+112 6r [ u,+1,2,j(Pi,jriui-l/z.j - Pi+di+G4+3m)l 

%llz,j - 4+llz,j-1 
+ 

'%+1.+-l/2 - vi,j-l/2 - 
SZ 1 6r ’ (8) 
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and 

The cell-centered convection terms in Eqs. (8) and (9) have been put into ZIP 
form, according to which, for example, 

(Ui,f)2 + Uf-l/Z,jUi+l,fp,j . 

This accomplishes the useful purpose of removing one of the low-order truncation- 
error terms [4]. A donor-cell form [4] for the convection fluxes may also occa- 
sionally be useful, especially for problems that start from violently discontinuous 
initial conditions; see discussion below for the one-dimensional analog. 

With these defined quantities, the momentum equations can be written 

in which the index, IZ + 1, indicates an advanced-time value, while the bar over p 
denotes a hybrid function, defined below. The weighting constant #J, with magni- 
tude between 0.0 and 1.0, denotes the relative level of time centering of the pressure 
term. For r$ = 1.0, that term is at the advanced time, as in the original version of 
ICE, whereas for #I = 0.5 the term is exactly time-centered, insofar as certain 
crucial truncation-error terms are concerned. For #I = 0.0, the method is purely 
explicit, closely resembling previous Eulerian techniques [3]. It is the Aexibilit$ 
of variable 9 that enables a comparison to be made between the potentially more 
accurate time-centered version and the completely advanced-time form, -which 
had previously been tested. 

The hybrid function jj is formed from the equation-of-state pressure function 
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p@, 1) in a manner similar to that used by Janenko and Neuvazaev [5] for a 
somewhat different purpose. 

Pi,j z PXj + CFj(P~:’ - Pi”,j), W) 

where c& = (8p/ap)tj is closely related to the speed of sound. (With a constant 
specific heat, Ci,j is the square of the isothermal sound speed.) Thus j& singles 
out from the equation of state its principal dependence upon the density and for it 
uses the advanced-time density, while the rest remains at the beginning-of-cycle 
values. This should not be interpreted as neglecting the effects of internal energy 
variations on the pressure. It simply means that those variations must be treated 
implicitly for the density, but can remain purely explicit for the internal energy. 
The usual purely explicit techniques for high-speed Eulerian calculations treat 
both variations explicitly in the equation of state, which can be accomplished in 
the present method simply by setting 0 = 4 = 0, in which case the calculational 
results are independent of the value of c& . 

In a similar fashion, the right side of the finite-difference mass equation can be 
weighted between a purely explicit form and an advanced time form, utilizing a 
constant 0 such that 0.0 < B < 1.0. 

+ y.y& [~i+lldP~+l,f - PLJ - ~i-1IdPL - PL,9x 

(13) 

In E.qs. (lo), (1 l), and (13) there occur the quantities @zL)~$~,~ and (pv)z& , 
which must be eliminated by algebraic substitution. The process of doing so 
introduces the quantity Gi,j which is formed entirely of data available at the 
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beginning of the cycle. Also, the occurrence of pFT1 is eliminated by means of 
Eq. (12). Thus, with 

the equation to be solved for pi,j is 

Zf an iterative procedure is to be used for the solution of Eq. (15), there is a 
transformation that is useful for calculations with large spatial variations In 
density. Let oi,j = &Jp& ; find the iterative solution for oi,? ; and then convert 
this back to the required j& . 

This completes the basic derivation of those equations that especially characterize 
the features of our revised ICE procedure. In summary, the procedure for a 
calcuiation cycle is as follows: 

1. Calculate the required beginning-of-cycle terms, Ri+I,IZ,j , S.1,jili2 ) Gisj ? 
2. Solve for @i,j for every cell: using Eq. (15). For some circumstances, a 

direct solution method can be used; for others it may be necessary to employ a 
relaxation technique, 

3. Solve for p$‘, using Eq. (12), 
4. Solve for the new values of the velocities, using Eqs. (IO) and (II), 
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5. Calculate the new energy for every cell, using the following finite-difference 
approximation to Eq. (4): 

+ y (21j-l,2*j+1,2 - %1/2,~-l/2)]] + ; [[g G,i+1 - &,J 

+ fg (& + 2& - U?,j-, - 2&J 

+ v (Vi+ll2+li2 - Vi-ll2,i-l/2~]]~~ (16) 

together with an equation for the specific internal energy, 

Ii,j = Ei,j - 3[(21,+,/2,~ + Ui-l/B,j)t + Cvi,j+l12 + vi,i--1/2)zl~ (17) 
Time indices have been omitted from most of Eq. (16); we ordinarily use the 
advanced-time densities and velocities, but there may be circumstances in which 
the previous-cycle values should be used. 
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in most of the equations, there are ambiguities regarding quantities that are 
required at localities other than those For which they are stored, In every case, 
these are to be formed of appropriate averages of nearby values. For example, 

INITIAL AND BOUNDARY CONDITIONS 

The original ICE technique [l] required pre-initial-time data as well as the usual 
array of initial conditions. This is not true for the present version. Accordingly, 
all that is required is a program setup for generating the distribution of variable 
values throughout the mesh and appropriate for representing the desired initial 
configuration of the fluid. The calculation carries on from there. 

Boundary conditions are derived in such a way as to describe the various walls 
or surfaces that may occur. These are of several types: 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 

No-slip rigid walls, 
Free-slip rigid walls, 
Prescribed-input walls, 
Prescribed-output walls, 
Continuative-output walls, 
Moveable surface adjacent to a vacuum, 
Moveable surface adjacent to an applied pressure, 
Moveable surface adjacent to another fluid. 

The first four are uniquely specified by the behavior of the normal and tangentia? 
velocity components, by the constraints these imply through the dynamical 
equations for their variations, and by the prescribed nature of the temperature or 
the heat flux. The fifth has no unique prescription, but must be derived in such 
a way as to have minimal effect on the flow in the region of interest. 

For the moveable surfaces the guiding principle is that of stress continuity; for 
a free surface, for example, the normal and tangential stresses must both vanish. 
The prescriptions resemble those of the MAC and SMAC methods [2] for incom- 
pressible fluid flow calculations. 
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A ONE-DIMENSIONAL ANALOGY 

A summary of the properties of the new ICE method has been given for a 
version of the program with allowance for a free surface [6]. Here, we illustrate 
some of the properties through an examination of a one-dimensional version. 
Analogous to Eqs. (1) and (2), the starting point is 

For the viscosity function LJ, we choose for illustration 

Again, it is convenient to define, in analogy to Eq. (8), 

1 
&+1/z = -$g bi+ldPi%--ll2 - Pi+&+3/2> + 4i - %+A 

so that the difference equations become 

and 

+ +;+1 + p:-1 - 2Pilz>, 

As in Eq. (14), we define 

(18) 

(19) 

2Ppi”, 
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in terms of which the equation to be solved is 

These expressions for the one-dimensional version form the basis for the discussion 
in the remainder of the paper, which illustrate restrictions and properties that are 
directly related to the full methodology. 

THE CONVECTIVE FLUXES 

There are various ways that the energy and momentum convective fluxes can 
be written, the precise form be&g irrelevant to the conceptual formulation of the 
ICE technique, but nevertheless crucial to the assurance of accuracy and numerica! 
stability of the calculations. At least four types of flux expressions are appropriate 
for consideration, each having advantages and disadvantages. Consider, fcs 
example, the momentum flux term (pu”), I While the density is already stored for 
the position at which the flux is to be evaluated (that is, at the center of ceil t) the 
velocity positions are at i 5 +, so that some type of interpolation is needed. 

The four flux expressions to be considered are: 

Centered: 

ZIP: 

In addition, there is an interpolated donor form, nor considered here. For the 
energy-equation convection terms there are analogous flux expressions for ‘I’LVO 
of these forms: 

Centered: (pz~E)~+~,~ - (Pi + Pi+3 Q.li@i + E’,,,?/% 

Donor: ipWi+m - i 
,vi++l/&i for ~~~~~~~ > 0 
Pi+14,-1;&;1 for 21~~~~~ < 0. 

Some properties of each of these are the following: 

1. Centered. This form eliminates one order of truncation error in 6x, 
compared with the donor cell flux, but this advantage is overshadowed by the 
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tendency to numerical instability that is produced by not the centering the 
convective flux. This tendency to instability is usually mitigated by the addition 
of a counterbalancing diffusive flux (either real or artificial) and can also be 
tolerated in circumstances in which the growth of the instability is bounded by 
nonlinear dissipative effects. 

7 d. ZIP. This form is also one order more “accurate” in 6.x than the donor 
cell flux, but, in addition, has the advantages of eliminating a nonlinear contri- 
bution to instability [4]. For these reasons, the ZIP flux is often preferred for the 
momentum convection. The ZIP flux also needs a counterbalancing diffusive flux 
when it is not centered in time. 

3. Donor. Neither the partial nor the complete donor cell flux is space 
centered, and, accordingly, both have low order (in 8.~) truncation errors. These 
contribute a positive diffusive effect and accordingly tend to automatically stabilize 
the numerical calculations. The magnitude, however, can be excessive, thereby 
masking the true diffusive effects and leading to erroneous interpretations (for 
example, for flows at high Reynolds numbers). Accordingly, the once-popular 
donor-cell llux representation is being abandoned by most investigators except 
for very spcial circumstances. 

Our recommendation for ICE calculations is to use ZIP fluxes or centered 
fluxes, the instability of these mitigated by the controlled use of artificial diffusion 
with a coefficient that just slightly exceeds the effective value predicted by trunca- 
tion error analysis. The only circumstance in which a donor-cell flux appears 
desirable is in the early stages of problems with especially violent initiation (for 
example, in high-speed projectile impact), the later stages of the calculation 
automatically shifting to the centered or ZIP flux. 

TRUNCATION ERRORS 

Analogous to the derivations in Refs. [l] and [4], we may expand the difference 
equations in a form that reveals the lowest order diffusional truncation effects. 
With ZIP differencing for the momentum convection terms, for example, the 
result is 

We have used c2 to denote either of several partial derivatives of p with respect 
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to p; accordingly, the symbol as used in this section is only approximately related 
to the square of the sound speed, being progressively more accurately so in the 
limit as c2 4 W. 

Several classes of effects can be noted from these equations. For c2 - c~ (the 
incompressible limit), the effective diffusion coefficient becomes large and negative 
if 6 and/or 4 is less than 0.5, corresponding to intolerable numerical instability. 
In contrast, for 6 and 4 both constants greater than 0.5, the difkion is positive 
(hence stabilizing) but can become intolerably large for one-dimensional problems, 
and in some cases also for two-dimensional problems. Accordingly, an alternative 
formulation of the ICE method could have variable functions for 0 and $, wil‘l. 
each varying as 0.5 + k/c2 as c2 + co, in which 1~ is an appropriate constant, 
with 0 and 4 approaching some bound (perhaps zero) as c2 -+- 0. (If, indeed, 0 and $ 
vanish as 2 + 0, then care will be necessary to assure the stability of the difference 
equations; for example, with centered flux differencing in the mass equation an 
added artificial mass diffusion, the T term, is required.) In any case, with variable 
B and $, these functions will have to be incorporated somewhat differently into 
the equations from the manner shown in Eqs. (18) and (19). To assure conservatioa, 
Eq. (la), for example, would be written 

in which the cell-edge 8 values are appropriate functions of the interpolated sound 
speed (or some measure thereof) at that locality. 

It should be emphasized that the excessive diffusion as eB -+ rx? is purely 
longitudinal, so that two-dimensional incompressible flow calculations with the 
ICE method ordinarily will not suffer from the effect, since longitudinal signal 
propagation is extremely rapid, anyway. 

Part of the necessary conditions 
and (21). Assuming that 0 and $ 
necessary requirements 

STABILITY 

for stability can be surmised from Eqs. (20) 
are properly chosen, we note the additional 
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Actually, the conditions for stability for the full two-dimensional case are even 
more stringent than implied by these statements. They are also more difficult to 
specify precisely. We have found from experience that it is necessary to have r, 
X and p all large enough so that 

We also require u,,& < 6x, in order that fluid move less than one cell per cycle. 
As an additional restriction, it is necessary that 

(A + 3-4 at < L 
pmin 6X” 4’ 

which, however, is more than sufficient for exclusively very low speed flows. (It 
may be noted that these various restrictions are not completely independent; 
satisfaction of all but one nearly implies satisfaction of them all.) As mentioned 
previously, the replacement X + hp, p + pp can be useful for artificial viscosity 
purposes, in that it removes pnlin from the last of the above stability requirements, 
thereby avoiding the requirement of very small time steps in regions of severe 
rarefaction. 

A CALCULATIONAL EXAMPLE 

Figures 2 and 3 illustrate an application of the ICE method to a typical problem 
with both high and low speed flows. The initial configuration shows a large heated 
sphere of air imbedded in the Earth’s atmosphere. Outside of the sphere the 
density variations are arranged to give exact pressure balance with gravity for a 
depth of 100 km (approximately thirteen e-foldings of density variation from the 
ground to the top). The frames in Fig. 2 show the development of the atmospheric 
dynamics at intervals of 50 sec., illustrated by marker-particle configurations. The 
corresponding velocity vectors are shown in Fig. 3. 

In the early stages, the air is highly compressible, and the high-speed properties 
of the ICE method are principally utilized. Later stages show a variety of stagnation 
circumstances in which the low-speed capabilities are crucial to successful calcula- 
tions. 
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The present computer program ordinarily rezones the region to add on more 

cells whenever a signal reaches the edge. To demonstrate the ICE technique 
properties for this paper, we turned off the rezone feature and allowed the shocks 
to reflect from the rigid walls of the computing region. Despite the severe stagnation 
in the reflection regions, there were no signs of instability such as would occur 
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FIG. 2. Cylindrically-symmetric explosion, with axis at the left, of a large, heated sphere of 
the Earth’s atmosphere. Marker particles trace the motion of the air. The times are (a) I = 3, 
(b) t = 50 set, (c) t = 100 set, (d) t = 150 set, (e) r = 200 set, (f) t = 250 sec. 
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